DBD::SQLite::Cookbook - The DBD::SQLite Cookbook

  1. DESCRIPTION
  2. AGGREGATE FUNCTIONS
    1. Variance
    2. Variance (Memory Efficient)
    3. Variance (Highly Scalable)
  3. SUPPORT
  4. TO DO
  5. AUTHOR
  6. COPYRIGHT

DESCRIPTION

This is the DBD::SQLite cookbook.

It is intended to provide a place to keep a variety of functions and formals for use in callback APIs in DBD::SQLite.

AGGREGATE FUNCTIONS

Variance

This is a simple aggregate function which returns a variance. It is adapted from an example implementation in pysqlite.

package variance;

sub new { bless [], shift; }

sub step {
    my ( $self, $value ) = @_;

    push @$self, $value;
}

sub finalize {
    my $self = $_[0];

    my $n = @$self;

    # Variance is NULL unless there is more than one row
    return undef unless $n || $n == 1;

    my $mu = 0;
    foreach my $v ( @$self ) {
        $mu += $v;
    }
    $mu /= $n;

    my $sigma = 0;
    foreach my $v ( @$self ) {
        $sigma += ($v - $mu)**2;
    }
    $sigma = $sigma / ($n - 1);

    return $sigma;
}

# NOTE: If you use an older DBI (< 1.608),
# use $dbh->func(..., "create_aggregate") instead.
$dbh->sqlite_create_aggregate( "variance", 1, 'variance' );

The function can then be used as:

SELECT group_name, variance(score)
FROM results
GROUP BY group_name;

Variance (Memory Efficient)

A more efficient variance function, optimized for memory usage at the expense of precision:

package variance2;

sub new { bless {sum => 0, count=>0, hash=> {} }, shift; }

sub step {
    my ( $self, $value ) = @_;
    my $hash = $self->{hash};

    # by truncating and hashing, we can comsume many more data points
    $value = int($value); # change depending on need for precision
                          # use sprintf for arbitrary fp precision
    if (exists $hash->{$value}) {
        $hash->{$value}++;
    } else {
        $hash->{$value} = 1;
    }
    $self->{sum} += $value;
    $self->{count}++;
}

sub finalize {
    my $self = $_[0];

    # Variance is NULL unless there is more than one row
    return undef unless $self->{count} > 1;

    # calculate avg
    my $mu = $self->{sum} / $self->{count};

    my $sigma = 0;
    while (my ($h, $v) = each %{$self->{hash}}) {
        $sigma += (($h - $mu)**2) * $v;
    }
    $sigma = $sigma / ($self->{count} - 1);

    return $sigma;
}

The function can then be used as:

SELECT group_name, variance2(score)
FROM results
GROUP BY group_name;

Variance (Highly Scalable)

A third variable implementation, designed for arbitrarily large data sets:

package variance3;

sub new { bless {mu=>0, count=>0, S=>0}, shift; }

sub step {
    my ( $self, $value ) = @_;
    $self->{count}++;
    my $delta = $value - $self->{mu};
    $self->{mu} += $delta/$self->{count};
    $self->{S} += $delta*($value - $self->{mu});
}

sub finalize {
    my $self = $_[0];
    return $self->{S} / ($self->{count} - 1);
}

The function can then be used as:

SELECT group_name, variance3(score)
FROM results
GROUP BY group_name;

SUPPORT

Bugs should be reported via the CPAN bug tracker at

http://rt.cpan.org/NoAuth/ReportBug.html?Queue=DBD-SQLite

TO DO

AUTHOR

Adam Kennedy <[email protected]>

Copyright 2009 - 2012 Adam Kennedy.

This program is free software; you can redistribute it and/or modify it under the same terms as Perl itself.

The full text of the license can be found in the LICENSE file included with this module.