List::Util - A selection of general-utility list subroutines
- SYNOPSIS
- DESCRIPTION
- LIST-REDUCTION FUNCTIONS
- KEY/VALUE PAIR LIST FUNCTIONS
- OTHER FUNCTIONS
- CONFIGURATION VARIABLES
- KNOWN BUGS
- SUGGESTED ADDITIONS
- SEE ALSO
- COPYRIGHT
SYNOPSIS
use List::Util qw(
reduce any all none notall first reductions
max maxstr min minstr product sum sum0
pairs unpairs pairkeys pairvalues pairfirst pairgrep pairmap
shuffle uniq uniqint uniqnum uniqstr zip mesh
);
DESCRIPTION
List::Util
contains a selection of subroutines that people have expressed would be nice to have in the perl core, but the usage would not really be high enough to warrant the use of a keyword, and the size so small such that being individual extensions would be wasteful.
By default List::Util
does not export any subroutines.
LIST-REDUCTION FUNCTIONS
The following set of functions all apply a given block of code to a list of values.
reduce
$result = reduce { BLOCK } @list
Reduces @list
by calling BLOCK
in a scalar context multiple times, setting $a
and $b
each time. The first call will be with $a
and $b
set to the first two elements of the list, subsequent calls will be done by setting $a
to the result of the previous call and $b
to the next element in the list.
Returns the result of the last call to the BLOCK
. If @list
is empty then undef
is returned. If @list
only contains one element then that element is returned and BLOCK
is not executed.
The following examples all demonstrate how reduce
could be used to implement the other list-reduction functions in this module. (They are not in fact implemented like this, but instead in a more efficient manner in individual C functions).
$foo = reduce { defined($a) ? $a :
$code->(local $_ = $b) ? $b :
undef } undef, @list # first
$foo = reduce { $a > $b ? $a : $b } 1..10 # max
$foo = reduce { $a gt $b ? $a : $b } 'A'..'Z' # maxstr
$foo = reduce { $a < $b ? $a : $b } 1..10 # min
$foo = reduce { $a lt $b ? $a : $b } 'aa'..'zz' # minstr
$foo = reduce { $a + $b } 1 .. 10 # sum
$foo = reduce { $a . $b } @bar # concat
$foo = reduce { $a || $code->(local $_ = $b) } 0, @bar # any
$foo = reduce { $a && $code->(local $_ = $b) } 1, @bar # all
$foo = reduce { $a && !$code->(local $_ = $b) } 1, @bar # none
$foo = reduce { $a || !$code->(local $_ = $b) } 0, @bar # notall
# Note that these implementations do not fully short-circuit
If your algorithm requires that reduce
produce an identity value, then make sure that you always pass that identity value as the first argument to prevent undef
being returned
$foo = reduce { $a + $b } 0, @values; # sum with 0 identity value
The above example code blocks also suggest how to use reduce
to build a more efficient combined version of one of these basic functions and a map
block. For example, to find the total length of all the strings in a list, we could use
$total = sum map { length } @strings;
However, this produces a list of temporary integer values as long as the original list of strings, only to reduce it down to a single value again. We can compute the same result more efficiently by using reduce
with a code block that accumulates lengths by writing this instead as:
$total = reduce { $a + length $b } 0, @strings
The other scalar-returning list reduction functions are all specialisations of this generic idea.
reductions
@results = reductions { BLOCK } @list
Since version 1.54.
Similar to reduce
except that it also returns the intermediate values along with the final result. As before, $a
is set to the first element of the given list, and the BLOCK
is then called once for remaining item in the list set into $b
, with the result being captured for return as well as becoming the new value for $a
.
The returned list will begin with the initial value for $a
, followed by each return value from the block in order. The final value of the result will be identical to what the reduce
function would have returned given the same block and list.
reduce { "$a-$b" } "a".."d" # "a-b-c-d"
reductions { "$a-$b" } "a".."d" # "a", "a-b", "a-b-c", "a-b-c-d"
any
my $bool = any { BLOCK } @list;
Since version 1.33.
Similar to grep
in that it evaluates BLOCK
setting $_
to each element of @list
in turn. any
returns true if any element makes the BLOCK
return a true value. If BLOCK
never returns true or @list
was empty then it returns false.
Many cases of using grep
in a conditional can be written using any
instead, as it can short-circuit after the first true result.
if( any { length > 10 } @strings ) {
# at least one string has more than 10 characters
}
Note: Due to XS issues the block passed may be able to access the outer @_ directly. This is not intentional and will break under debugger.
all
my $bool = all { BLOCK } @list;
Since version 1.33.
Similar to "any", except that it requires all elements of the @list
to make the BLOCK
return true. If any element returns false, then it returns false. If the BLOCK
never returns false or the @list
was empty then it returns true.
Note: Due to XS issues the block passed may be able to access the outer @_ directly. This is not intentional and will break under debugger.
none
notall
my $bool = none { BLOCK } @list;
my $bool = notall { BLOCK } @list;
Since version 1.33.
Similar to "any" and "all", but with the return sense inverted. none
returns true only if no value in the @list
causes the BLOCK
to return true, and notall
returns true only if not all of the values do.
Note: Due to XS issues the block passed may be able to access the outer @_ directly. This is not intentional and will break under debugger.
first
my $val = first { BLOCK } @list;
Similar to grep
in that it evaluates BLOCK
setting $_
to each element of @list
in turn. first
returns the first element where the result from BLOCK
is a true value. If BLOCK
never returns true or @list
was empty then undef
is returned.
$foo = first { defined($_) } @list # first defined value in @list
$foo = first { $_ > $value } @list # first value in @list which
# is greater than $value
max
my $num = max @list;
Returns the entry in the list with the highest numerical value. If the list is empty then undef
is returned.
$foo = max 1..10 # 10
$foo = max 3,9,12 # 12
$foo = max @bar, @baz # whatever
maxstr
my $str = maxstr @list;
Similar to "max", but treats all the entries in the list as strings and returns the highest string as defined by the gt
operator. If the list is empty then undef
is returned.
$foo = maxstr 'A'..'Z' # 'Z'
$foo = maxstr "hello","world" # "world"
$foo = maxstr @bar, @baz # whatever
min
my $num = min @list;
Similar to "max" but returns the entry in the list with the lowest numerical value. If the list is empty then undef
is returned.
$foo = min 1..10 # 1
$foo = min 3,9,12 # 3
$foo = min @bar, @baz # whatever
minstr
my $str = minstr @list;
Similar to "min", but treats all the entries in the list as strings and returns the lowest string as defined by the lt
operator. If the list is empty then undef
is returned.
$foo = minstr 'A'..'Z' # 'A'
$foo = minstr "hello","world" # "hello"
$foo = minstr @bar, @baz # whatever
product
my $num = product @list;
Since version 1.35.
Returns the numerical product of all the elements in @list
. If @list
is empty then 1
is returned.
$foo = product 1..10 # 3628800
$foo = product 3,9,12 # 324
sum
my $num_or_undef = sum @list;
Returns the numerical sum of all the elements in @list
. For backwards compatibility, if @list
is empty then undef
is returned.
$foo = sum 1..10 # 55
$foo = sum 3,9,12 # 24
$foo = sum @bar, @baz # whatever
sum0
my $num = sum0 @list;
Since version 1.26.
Similar to "sum", except this returns 0 when given an empty list, rather than undef
.
KEY/VALUE PAIR LIST FUNCTIONS
The following set of functions, all inspired by List::Pairwise, consume an even-sized list of pairs. The pairs may be key/value associations from a hash, or just a list of values. The functions will all preserve the original ordering of the pairs, and will not be confused by multiple pairs having the same "key" value - nor even do they require that the first of each pair be a plain string.
NOTE: At the time of writing, the following pair*
functions that take a block do not modify the value of $_
within the block, and instead operate using the $a
and $b
globals instead. This has turned out to be a poor design, as it precludes the ability to provide a pairsort
function. Better would be to pass pair-like objects as 2-element array references in $_
, in a style similar to the return value of the pairs
function. At some future version this behaviour may be added.
Until then, users are alerted NOT to rely on the value of $_
remaining unmodified between the outside and the inside of the control block. In particular, the following example is UNSAFE:
my @kvlist = ...
foreach (qw( some keys here )) {
my @items = pairgrep { $a eq $_ } @kvlist;
...
}
Instead, write this using a lexical variable:
foreach my $key (qw( some keys here )) {
my @items = pairgrep { $a eq $key } @kvlist;
...
}
pairs
my @pairs = pairs @kvlist;
Since version 1.29.
A convenient shortcut to operating on even-sized lists of pairs, this function returns a list of ARRAY
references, each containing two items from the given list. It is a more efficient version of
@pairs = pairmap { [ $a, $b ] } @kvlist
It is most convenient to use in a foreach
loop, for example:
foreach my $pair ( pairs @kvlist ) {
my ( $key, $value ) = @$pair;
...
}
Since version 1.39
these ARRAY
references are blessed objects, recognising the two methods key
and value
. The following code is equivalent:
foreach my $pair ( pairs @kvlist ) {
my $key = $pair->key;
my $value = $pair->value;
...
}
Since version 1.51
they also have a TO_JSON
method to ease serialisation.
unpairs
my @kvlist = unpairs @pairs
Since version 1.42.
The inverse function to pairs
; this function takes a list of ARRAY
references containing two elements each, and returns a flattened list of the two values from each of the pairs, in order. This is notionally equivalent to
my @kvlist = map { @{$_}[0,1] } @pairs
except that it is implemented more efficiently internally. Specifically, for any input item it will extract exactly two values for the output list; using undef
if the input array references are short.
Between pairs
and unpairs
, a higher-order list function can be used to operate on the pairs as single scalars; such as the following near-equivalents of the other pair*
higher-order functions:
@kvlist = unpairs grep { FUNC } pairs @kvlist
# Like pairgrep, but takes $_ instead of $a and $b
@kvlist = unpairs map { FUNC } pairs @kvlist
# Like pairmap, but takes $_ instead of $a and $b
Note however that these versions will not behave as nicely in scalar context.
Finally, this technique can be used to implement a sort on a keyvalue pair list; e.g.:
@kvlist = unpairs sort { $a->key cmp $b->key } pairs @kvlist
pairkeys
my @keys = pairkeys @kvlist;
Since version 1.29.
A convenient shortcut to operating on even-sized lists of pairs, this function returns a list of the the first values of each of the pairs in the given list. It is a more efficient version of
@keys = pairmap { $a } @kvlist
pairvalues
my @values = pairvalues @kvlist;
Since version 1.29.
A convenient shortcut to operating on even-sized lists of pairs, this function returns a list of the the second values of each of the pairs in the given list. It is a more efficient version of
@values = pairmap { $b } @kvlist
pairgrep
my @kvlist = pairgrep { BLOCK } @kvlist;
my $count = pairgrep { BLOCK } @kvlist;
Since version 1.29.
Similar to perl's grep
keyword, but interprets the given list as an even-sized list of pairs. It invokes the BLOCK
multiple times, in scalar context, with $a
and $b
set to successive pairs of values from the @kvlist
.
Returns an even-sized list of those pairs for which the BLOCK
returned true in list context, or the count of the number of pairs in scalar context. (Note, therefore, in scalar context that it returns a number half the size of the count of items it would have returned in list context).
@subset = pairgrep { $a =~ m/^[[:upper:]]+$/ } @kvlist
As with grep
aliasing $_
to list elements, pairgrep
aliases $a
and $b
to elements of the given list. Any modifications of it by the code block will be visible to the caller.
pairfirst
my ( $key, $val ) = pairfirst { BLOCK } @kvlist;
my $found = pairfirst { BLOCK } @kvlist;
Since version 1.30.
Similar to the "first" function, but interprets the given list as an even-sized list of pairs. It invokes the BLOCK
multiple times, in scalar context, with $a
and $b
set to successive pairs of values from the @kvlist
.
Returns the first pair of values from the list for which the BLOCK
returned true in list context, or an empty list of no such pair was found. In scalar context it returns a simple boolean value, rather than either the key or the value found.
( $key, $value ) = pairfirst { $a =~ m/^[[:upper:]]+$/ } @kvlist
As with grep
aliasing $_
to list elements, pairfirst
aliases $a
and $b
to elements of the given list. Any modifications of it by the code block will be visible to the caller.
pairmap
my @list = pairmap { BLOCK } @kvlist;
my $count = pairmap { BLOCK } @kvlist;
Since version 1.29.
Similar to perl's map
keyword, but interprets the given list as an even-sized list of pairs. It invokes the BLOCK
multiple times, in list context, with $a
and $b
set to successive pairs of values from the @kvlist
.
Returns the concatenation of all the values returned by the BLOCK
in list context, or the count of the number of items that would have been returned in scalar context.
@result = pairmap { "The key $a has value $b" } @kvlist
As with map
aliasing $_
to list elements, pairmap
aliases $a
and $b
to elements of the given list. Any modifications of it by the code block will be visible to the caller.
See "KNOWN BUGS" for a known-bug with pairmap
, and a workaround.
OTHER FUNCTIONS
shuffle
my @values = shuffle @values;
Returns the values of the input in a random order
@cards = shuffle 0..51 # 0..51 in a random order
This function is affected by the $RAND
variable.
sample
my @items = sample $count, @values
Since version 1.54.
Randomly select the given number of elements from the input list. Any given position in the input list will be selected at most once.
If there are fewer than $count
items in the list then the function will return once all of them have been randomly selected; effectively the function behaves similarly to "shuffle".
This function is affected by the $RAND
variable.
uniq
my @subset = uniq @values
Since version 1.45.
Filters a list of values to remove subsequent duplicates, as judged by a DWIM-ish string equality or undef
test. Preserves the order of unique elements, and retains the first value of any duplicate set.
my $count = uniq @values
In scalar context, returns the number of elements that would have been returned as a list.
The undef
value is treated by this function as distinct from the empty string, and no warning will be produced. It is left as-is in the returned list. Subsequent undef
values are still considered identical to the first, and will be removed.
uniqint
my @subset = uniqint @values
Since version 1.55.
Filters a list of values to remove subsequent duplicates, as judged by an integer numerical equality test. Preserves the order of unique elements, and retains the first value of any duplicate set. Values in the returned list will be coerced into integers.
my $count = uniqint @values
In scalar context, returns the number of elements that would have been returned as a list.
Note that undef
is treated much as other numerical operations treat it; it compares equal to zero but additionally produces a warning if such warnings are enabled (use warnings 'uninitialized';
). In addition, an undef
in the returned list is coerced into a numerical zero, so that the entire list of values returned by uniqint
are well-behaved as integers.
uniqnum
my @subset = uniqnum @values
Since version 1.44.
Filters a list of values to remove subsequent duplicates, as judged by a numerical equality test. Preserves the order of unique elements, and retains the first value of any duplicate set.
my $count = uniqnum @values
In scalar context, returns the number of elements that would have been returned as a list.
Note that undef
is treated much as other numerical operations treat it; it compares equal to zero but additionally produces a warning if such warnings are enabled (use warnings 'uninitialized';
). In addition, an undef
in the returned list is coerced into a numerical zero, so that the entire list of values returned by uniqnum
are well-behaved as numbers.
Note also that multiple IEEE NaN
values are treated as duplicates of each other, regardless of any differences in their payloads, and despite the fact that 0+'NaN' == 0+'NaN'
yields false.
uniqstr
my @subset = uniqstr @values
Since version 1.45.
Filters a list of values to remove subsequent duplicates, as judged by a string equality test. Preserves the order of unique elements, and retains the first value of any duplicate set.
my $count = uniqstr @values
In scalar context, returns the number of elements that would have been returned as a list.
Note that undef
is treated much as other string operations treat it; it compares equal to the empty string but additionally produces a warning if such warnings are enabled (use warnings 'uninitialized';
). In addition, an undef
in the returned list is coerced into an empty string, so that the entire list of values returned by uniqstr
are well-behaved as strings.
head
my @values = head $size, @list;
Since version 1.50.
Returns the first $size
elements from @list
. If $size
is negative, returns all but the last $size
elements from @list
.
@result = head 2, qw( foo bar baz );
# foo, bar
@result = head -2, qw( foo bar baz );
# foo
tail
my @values = tail $size, @list;
Since version 1.50.
Returns the last $size
elements from @list
. If $size
is negative, returns all but the first $size
elements from @list
.
@result = tail 2, qw( foo bar baz );
# bar, baz
@result = tail -2, qw( foo bar baz );
# baz
zip
my @result = zip [1..3], ['a'..'c'];
# [1, 'a'], [2, 'b'], [3, 'c']
Since version 1.56.
Returns a list of array references, composed of elements from the given list of array references. Each array in the returned list is composed of elements at that corresponding position from each of the given input arrays. If any input arrays run out of elements before others, then undef
will be inserted into the result to fill in the gaps.
The zip
function is particularly handy for iterating over multiple arrays at the same time with a foreach
loop, taking one element from each:
foreach ( zip \@xs, \@ys, \@zs ) {
my ($x, $y, $z) = @$_;
...
}
NOTE to users of List::MoreUtils: This function does not behave the same as List::MoreUtils::zip
, but is actually a non-prototyped equivalent to List::MoreUtils::zip_unflatten
. This function does not apply a prototype, so make sure to invoke it with references to arrays.
For a function similar to the zip
function from List::MoreUtils
, see mesh.
my @result = zip_shortest ...
A variation of the function that differs in how it behaves when given input arrays of differing lengths. zip_shortest
will stop as soon as any one of the input arrays run out of elements, discarding any remaining unused values from the others.
my @result = zip_longest ...
zip_longest
is an alias to the zip
function, provided simply to be explicit about that behaviour as compared to zip_shortest
.
mesh
my @result = mesh [1..3], ['a'..'c'];
# (1, 'a', 2, 'b', 3, 'c')
Since version 1.56.
Returns a list of items collected from elements of the given list of array references. Each section of items in the returned list is composed of elements at the corresponding position from each of the given input arrays. If any input arrays run out of elements before others, then undef
will be inserted into the result to fill in the gaps.
This is similar to zip, except that all of the ranges in the result are returned in one long flattened list, instead of being bundled into separate arrays.
Because it returns a flat list of items, the mesh
function is particularly useful for building a hash out of two separate arrays of keys and values:
my %hash = mesh \@keys, \@values;
my $href = { mesh \@keys, \@values };
NOTE to users of List::MoreUtils: This function is a non-prototyped equivalent to List::MoreUtils::mesh
or List::MoreUtils::zip
(themselves aliases of each other). This function does not apply a prototype, so make sure to invoke it with references to arrays.
my @result = mesh_shortest ...
my @result = mesh_longest ...
These variations are similar to those of zip, in that they differ in behaviour when one of the input lists runs out of elements before the others.
CONFIGURATION VARIABLES
$RAND
local $List::Util::RAND = sub { ... };
Since version 1.54.
This package variable is used by code which needs to generate random numbers (such as the "shuffle" and "sample" functions). If set to a CODE reference it provides an alternative to perl's builtin rand()
function. When a new random number is needed this function will be invoked with no arguments and is expected to return a floating-point value, of which only the fractional part will be used.
KNOWN BUGS
RT #95409
https://rt.cpan.org/Ticket/Display.html?id=95409
If the block of code given to "pairmap" contains lexical variables that are captured by a returned closure, and the closure is executed after the block has been re-used for the next iteration, these lexicals will not see the correct values. For example:
my @subs = pairmap {
my $var = "$a is $b";
sub { print "$var\n" };
} one => 1, two => 2, three => 3;
$_->() for @subs;
Will incorrectly print
three is 3
three is 3
three is 3
This is due to the performance optimisation of using MULTICALL
for the code block, which means that fresh SVs do not get allocated for each call to the block. Instead, the same SV is re-assigned for each iteration, and all the closures will share the value seen on the final iteration.
To work around this bug, surround the code with a second set of braces. This creates an inner block that defeats the MULTICALL
logic, and does get fresh SVs allocated each time:
my @subs = pairmap {
{
my $var = "$a is $b";
sub { print "$var\n"; }
}
} one => 1, two => 2, three => 3;
This bug only affects closures that are generated by the block but used afterwards. Lexical variables that are only used during the lifetime of the block's execution will take their individual values for each invocation, as normal.
uniqnum() on oversized bignums
Due to the way that uniqnum()
compares numbers, it cannot distinguish differences between bignums (especially bigints) that are too large to fit in the native platform types. For example,
my $x = Math::BigInt->new( "1" x 100 );
my $y = $x + 1;
say for uniqnum( $x, $y );
Will print just the value of $x
, believing that $y
is a numerically- equivalent value. This bug does not affect uniqstr()
, which will correctly observe that the two values stringify to different strings.
SUGGESTED ADDITIONS
The following are additions that have been requested, but I have been reluctant to add due to them being very simple to implement in perl
# How many elements are true
sub true { scalar grep { $_ } @_ }
# How many elements are false
sub false { scalar grep { !$_ } @_ }
SEE ALSO
COPYRIGHT
Copyright (c) 1997-2007 Graham Barr <[email protected]>. All rights reserved. This program is free software; you can redistribute it and/or modify it under the same terms as Perl itself.
Recent additions and current maintenance by Paul Evans, <[email protected]>.